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Abstract Cohort studies are becoming essential tools in epidemiological research.
In these studies, measurements are not restricted to single variables but can be seen as
trajectories. Statistical methods used to determine homogeneous patient trajectories
can be separated into two families: model-based methods (like Proc Traj) and partition-
al clustering (non-parametric algorithms like k-means). KmL is a new implementation
of k-means designed to work specifically on longitudinal data. It provides scope for
dealing with missing values and runs the algorithm several times, varying the starting
conditions and/or the number of clusters sought; its graphical interface helps the user
to choose the appropriate number of clusters when the classic criterion is not efficient.
To check KmL efficiency, we compare its performances to Proc Traj both on artificial
and real data. The two techniques give very close clustering when trajectories follow
polynomial curves. KmL gives much better results on non-polynomial trajectories.
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1 Introduction

Cohort studies are becoming essential tools in epidemiological research. In these stud-
ies, measurements are not restricted to single variables but can be seen as trajectories.
As for regular variables, statistical methods can be used to determine homogeneous
patient trajectories (Tarpey and Kinateder 2003; Rossi et al. 2004; Abraham et al.
2003; James and Sugar 2003). The field of functional cluster analysis can be sepa-
rated into two families. The first comprises model-based methods. These are related
to mixture modelling techniques or latent class analysis (Boik et al. 2008; Atienza
et al. 2008). The second family relates to the more classical algorithmic approaches to
cluster analysis, such as hierarchical or partitional clustering (Goldstein 1995; Everitt
et al. 2001; Ryan 2008). The pros and cons of both approaches are regularly discussed
(Magidson and Vermunt 2002; Everitt et al. 2001), even if there is at present little data
to show which method is preferable in which situation. In favour of mixture model-
ling or model-based methods more generally: (1) formal tests can be used to check
the validity of the partitioning; (2) results are invariant in linear transformation, so
there is no need to standardize variables (this will not be an issue on longitudinal data
since all measurements are performed on the same scale), (3) if the model is realistic,
inferences about the data-generating process may be possible. On the other hand, tra-
ditional algorithmic methods can also have some potential advantages: (1) they do not
require any normality or parametric assumptions within clusters (they might be more
efficient under a given assumption, but they do not require one; this can be of great
interest when the task is to cluster data on which no prior information is available); (2)
they are likely to be more robust as regards numerical convergence; (3) in the particular
context of longitudinal data, they do not require any assumption regarding the shape
of the trajectory (this is likely to be an important point: clustering of longitudinal data
is basically an exploratory approach), (4) also in the longitudinal context, they are
independent from time-scaling. Even if both methods have been extensively studied,
they still present considerable weaknesses, and first of all the difficulty in finding the
exact number of clusters. Akaike (1974), Bezdek and Pal (1998), Schwarz (1978),
and Sugar and James (2003) provide examples of criteria used to solve this problem.
Milligan and Cooper (1985), Shim et al. (2005), Maulik and Bandyopadhyay (2002),
Košmelj and Batagelj (1990) compare them using artificial data. Even if criteria per-
form unequally, all of them fail on a significant proportion of data. Moreover, no study
compares criteria specifically on longitudinal data. The problem of cluster selection
is indeed an important issue for longitudinal data. More information about clustering
longitudinal data can be found in Warren-Liao (2005). Regarding software, longitudi-
nal mixture modeling analysis has been implemented by Jones et al. (2001), Jones and
Nagin (2007), Nagin and Tremblay (2001), Jones (2001) in a procedure called Proc
Traj on the SAS platform. It has already be extensively used in research on various top-
ics (Jones and Nagin 2007; Clark et al. 2006; Conklin et al. 2005; Nagin 2005). On the
R platform (R Development Core Team 2009), S. G. Buyske has proposed the mmlcr
package, but the statistical background of this routine is not fully documented. Mplus
(Muthén and Muthén 1998) is also statistical software that provides a general frame-
work that can deal with mixture modeling on longitudinal data. It can be noted that
these three procedures are model-based. For the non-parametric solutions, numerous
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versions of k-means exist, whether strict (Kaufman and Rousseeuw 1990; Celeux and
Govaert 1992) or with variation (Tokushige et al. 2007; Tarpey 2007; García-Escudero
and Gordaliza 2005; Vlachos et al. 2003; D’Urso 2004; Lu et al. 2004), but they have
considerable drawbacks: 1/ they are not able to deal with missing values; 2/ since the
determination of the number of clusters is still an open issue, they require the user to
manually re-run k-means several times. In simulation, numerous authors use k-means
to compare the different criteria used to find the best cluster number. But the perfor-
mance of k-means has never been compared to parametric algorithms on longitudinal
data.

The rest of this paper is organized as follows: Sect. 2 presents KmL, a package
implementing k-means (Lloyd version, 1982) Our package is designed for R plat-
form and is available at (Genolini 2008). It is able to deal with missing values; it
also provides an easy way to run the algorithm several times, varying the starting
conditions and/or the number of clusters looked for; its graphical interface helps the
user to choose the appropriate number of clusters when the classic criterion is not
efficient. Section 3 presents simulations on both artificial and real data. Performances
of k-means on longitudinal data are compared to Proc Traj results (this appears as the
fully dedicated statistical tool that is the most widely used in the literature). Section 4
is the discussion.

2 Algorithm

2.1 Introduction to k-means

K-means is a hill-climbing algorithm (Everitt et al. 2001) belonging to the EM class
(Expectation-Maximization) (Celeux and Govaert 1992). Expectation-maximization
algorithms work as follows: initially, each observation is assigned to a cluster. Then
the optimal clustering is reached by alternating two phases. During the Expectation
phase, the centers of each cluster (called seeds) are computed. Then the Maximisation
phase consists in assigning each observation to its “nearest cluster”. The alternation
of the two phases is repeated until no further changes occur in the clusters.

More precisely, consider a set S of n subjects. For each subject, an outcome variable
Y at t different times is measured. The value of Y for subject i at time k is noted as yik .
For subject i , the sequence yik is called a trajectory, it is noted yi = (yi1, yi2, . . . , yit ).
The aim of the clustering is to divide S into g homogeneous sub-groups. Tradition-
ally, k-means can be run using several distances. KmL can use the Euclidean distance

Dist(yi , y j ) =
√

1
t

∑t
k=1(yik − y jk)2 and the Manathan distance DistM (yi , y j ) =

1
t

∑t
k=1 |yik − y jk | (more robust towards outliers (Kaufman and Rousseeuw 1990)).

2.2 Choosing an optimal number of clusters

To chose the optimal number of clusters, KmL uses the Calinski and Harabasz cri-
terion C(g) (Calinski and Harabasz 1974). It has interesting properties, as shown by
several authors (Milligan and Cooper 1985; Shim et al. 2005). Let nm be the number
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of trajectories in cluster m; ym the mean trajectory of cluster m; y the mean trajectory
of the whole set S and v′ denotes the transposition of vector v. Then the between-var-
iance matrix is B = ∑g

m=1 nm(ym − y)(ym − y)′; the trace of the between-variance
is the sum of its diagonal coefficients. High between-variance denotes well separated
clusters, low between-variance means groups close to each other. The within-variance
is W = ∑g

m=1

∑nm
k=1(ymk − ym)(ymk − ym)′. Low within-variance denotes compact

groups, high within-variance denotes heterogeneous groups [more details on between
and within variance in Everitt et al. (2001)]. The Calinski and Harabazt criterion com-
bines the within and between matrices to evaluate clustering quality. The optimal num-

ber of clusters corresponds to the value of g that maximizes C(g) = Trace(B)

Trace(W )
· n−g

g−1
where B is the between-matrix and W the within-matrix.

2.3 Avoiding local maxima

One major weakness of hill-climbing algorithms is that they may converge to a local
maximum that does not correspond to the best possible clustering in terms of homo-
geneity. To overcome this problem, different solutions have been proposed. Hartigan
(1975) and Tou and Gonzalez (1980) suggest choosing the initial clusters. Vlachos
et al. (2003) run a “wavelet” k-means process, modifying the result of a computation
and using it as the starting point for the next computation. Sugar and James (2003)
and Hand and Krzanowski (2005) suggest running the algorithm several times, and
retaining the best solution. It is this approach that has been chosen here. As for the
cluster number, the “best” solution is the one that maximizes the between-matrix vari-
ance and minimizes the within-variance. Once more, we use the Calinski and Harabatz
criterion.

2.4 Dealing with missing value

There are very few studies that try to cluster data assuming missing values (Hunt and
Jorgensen 2003). The simplest way to handle missing data is to exclude trajectories
for which certain data are missing. This can severely reduce the sample size, and lon-
gitudinal data are especially concerned and subject to missing values (missing values
are more likely when an individual is asked to complete certain variables every week
than when subjects are asked to complete data only once). In addition, having missing
values can be a characteristic that defines a particular cluster, for example an “early
drop-out” group.

A different approach has been used here. There is a need to deal with missing data
at two different stages. First, during clustering, it is necessary to calculate the distance
between two trajectories. Instead of using classic distances as defined in Sect. 2.1, we
use distances with Gower adjustment (Gower 1971): Given yi and y j , let wi jk be 0 if yik

or y jk or both are missing, and 1 otherwise; the Euclidian distance with Gower adjust-

ment between yi and y j is DistGower(yi , y j ) =
√

1∑
wi jk

∑t
k=1(yik − y jk)2 · wi jk .

The second problematic step is the calculation of C(g) which helps in the determina-
tion of the optimal clustering. At this stage, missing values need to be imputed. We use
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Fig. 1 Example of mean shape copying imputation

the following rules (called mean shape copying): if yik is missing, let yia and yib be the
closest preceding and following non-missing values of yik ; let ym = (ym1, . . . , ymt )

denote the mean trajectory of yi cluster. Then yik = yia + (ymk − yma) × yib−yia
ymb−yma

.
If first values are missing, let yib be the first non-missing value. Then yik = yib +
(ymk − ymb). If last values are missing, let yia be the last non-missing value. Then
yik = yia +(ymk −yma). Figure 1 gives an example of mean shape copying imputation.

2.5 Implementation of the package

The k-means algorithm used is the Lloyd version (Lloyd 1982). Most of KmL code
is written in R using S4 objects (Genolini 2009). The critical part of the programme,
clustering, is implemented in two different ways. The first, written in R, provides
several options: it can display a graphical representation of the cluster during the con-
vergence of the algorithm; it also lets the user define a distance function that KmL
can use to cluster the data. The second, in C (compiled), does not offer any option but
is optimized: the C procedure is around 20 times faster than the R procedure. Note
that the user does not have to choose between the two functions: KmL automatically
selects the fast one when possible, otherwise the slow one.

3 Simulations and applications to real data

3.1 Construction of artificial data sets

To compare the efficiency of Proc Traj and KmL, simulated data were used. We worked
on 5,600 data sets defined as follow: a data set is the mixture of several sub-groups.
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Fig. 2 Trajectory shapes

A subgroup m is defined by a function fm(k) called the theoretical trajectory. Each
subject i of a sub-group follows the theoretical trajectory of its subgroup plus a per-
sonal variation εi (k). The mixture of the different theoretical trajectories is called the
data set shape. The 5600 data sets were formed varying the data set shape, the number
of subjects in each cluster and the personal variations. We defined four data set shapes
(presented Fig. 2).

1. “Three diverging lines” is defined by f A(k) = −k ; fB(k) = 0 ; fC (k) = k with
k in [0 : 10].

2. “Three crossing lines” is defined by f A(k) = 2 ; fB(k) = 10 ; fC (k) = 12 − 2k
with k in [0 : 6].

3. “Four normal laws” is defined by f A(k) = N (k −20, 2) ; fB(k) = N (k −25, 2) ;
fC (k) = N (k − 30, 2) ; fD(k) = N (k − 25, 4)/2 with k in [0 : 50] and N (m, σ )

denote the normal law with a mean of m and a standard deviation of σ .
4. “Crossing and polynomial” is defined by f A(k) = 0 ; fB(k) = k ; fC (k) = 10−k

; fD(k) = −0.4k2 + 4k with k in [0 : 10].
They were chosen either to correspond to three clearly identifiable clusters (set 1),

to present a complex structure (every trajectory intersecting all the others, set 4) or
to copy real data (Tremblay (2008) and data presented in Sect. 3.3, sets 2 and 3).
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Fig. 3 Comparison of Correct Classification Rate between KmL and Proc Traj

Personal variations εi (k) are randomised and follow the normal law N (0, σ ). Stan-
dard deviations increase from σ = 1 to σ = 8 (by steps of 0.01). Since the distance
between two theoretical trajectories is around 10, σ = 1 provides “easily identifiable
and distinct clusters” whereas σ = 8 gives “markedly overlapping groups”. The num-
ber of subjects in each cluster is set at either 50 or 200. Overall, 4 (data set shape)
×700 (variance) ×2 (number of subjects) = 5,600 data sets were created. In a spe-
cific data set, the trajectories yik of an individual belonging to group g is defined by
yik = f g(k)+ εi (k), with εi (k) N (0, σ 2). For the analyses using Proc Traj and KmL,
the appropriate number of groups was entered. In addition, the analyses using Proc
Traj required the degrees of polynomials that best fitted the trajectories.

3.2 Comparison of KmL and Proc Traj on artificial data sets

Evaluation of KmL and Proc Traj efficiency was performed by measuring two cri-
teria on each clustering C that they found. Firstly, on the artificial data set, the real
clustering R is known (the clusters in which each subject should be). The Correct
Classification Rate (CCR) is the percentage of trajectories that are in the same cluster
in C and R (Beauchaine and Beauchaine 2002), that is the percentage of subjects for
whom an algorithm makes the right decision. Secondly, working on C , it is possible
to evaluate the mean trajectory of each cluster (called the observed trajectory of a
cluster). Observed trajectories are an estimation of the theoretical trajectory f A(k),
fB(k), fC (k) and fD(k). An efficient algorithm will find observed trajectories close
to the theoretical trajectories. Thus the second criterion, DOT, is the average Distance
between Observed and Theoretical trajectories. Figures 3 and 4 present the results of
the simulations. The graphs present the CCR (resp. the DOT) according to the standard
deviation. Table 1 shows the average CCR (resp. the average DOT) for each data set
shape.

On dataset shape for 1, 2 and 4, KmL and Proc Traj give very close results whether
on CCR or on DOT. In example 3: “Four normal laws”, Proc Traj does not converge,
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Fig. 4 Comparison of Distance Observed–Theoretical trajectories between KmL and Proc Traj

Table 1 Comparison of average
DOT and average CCR between
KmL and Proc Traj

Data set KmL Proc Traj

Average CCR
1 0.95 0.95

2 0.91 0.91

3 0.86 0.20

4 0.91 0.91

Average DOT
1 3.17 3.02

2 3.04 2.48

3 9.66 34.28

4 4.24 3.79

or finds results very far removed from the real clusters. KmL performances are as
relevant as those obtained on examples 1, 2 and 4.

3.3 Application to real data

The first real example is derived from (Touchette et al. 2007). This study was con-
ducted as part of the Quebec Longitudinal Study of Child Development (Canada)
initiated by the Quebec Institute of Statistics. The aim of the study was to investigate
the associations between longitudinal sleep duration patterns and behavioral/cognitive
functioning at school entry. About 1,492 families participated in the study until the
children were 6 years old. Nocturnal sleep duration was measured at 2.5, 3.5, 4, 5,
and 6 years of age by an open question on the Self-Administered Questionnaire for
the Mother (SAQM). In the original article, a semiparametric model was used to iden-
tify subgroups of children who followed different developmental trajectories. They
obtained four sleep duration patterns, as illustrated in Fig. 5: a persistent short pattern
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Fig. 5 Sleep duration, means trajectories found by KmL and Proc Traj

Fig. 6 Hospitalisation length, mean trajectories found by KmL

composed of children sleeping less than 10 h per night until age six; a increasing short
pattern composed of children who slept fewer hours in early childhood but whose
sleep duration increased around 41 months of age, a 10 h persistent pattern composed
of children who slept persistently approximately 10 h per night; and an 11 h persistent
pattern composed of children who slept persistently around 11 h per night.

On this data, KmL finds an optimal solution for a partition into four clusters (as
does PROC TRAJ). The trajectories found by both methods are very close (see Fig. 5).
The average distance between observed trajectories found by Proc Traj and by KmL
is 0.31, which is rather small considering the range of the data (0;12).

The second real example is from a study on the Trajectories of adolescents hospi-
talized for Anorexia Nervosa and their social integration in adulthood, by Hubert,
Genolini and Godart (submitted). This study is being conducted at the Institut
Mutualiste Montsouris. The authors investigate the relation between adolescent hos-
pitalization for anorexia and their social integration in adulthood. Three hundred and
eleven anorexic subjects were included in the study. They were followed from age 0 to
26. The outcome considered here is the annual hospitalisation length, as a percentage.
KmL found an optimal solution for a partition into four clusters. The trajectories found
by KmL are shown in Fig. 6. Depending on the number of clusters specified in the
program, Proc Traj either stated a “false convergence” or gave incoherent results.
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4 Discussion

In this article, we present KmL, a new package implementing k-means. The advantage
of KmL over the existing procedures (“cluster”, “clusterSim”, “flexclust” or “mclust”)
is that it is designed to work specifically on longitudinal data. It provides scope for
dealing with missing values; it runs the algorithm several times, varying the starting
conditions and/or the number of clusters sought; its graphical interface helps the user
to choose the appropriate number of clusters when the classic criterion is not efficient.
We also present simulations, and we compare k-means to the latent class model Proc
Traj. According to simulations and analysis of real data, k-means seems as efficient as
the existing parametric algorithm on polynomial data, and potentially more efficient
on non-polynomial data.

4.1 Limitations

The limitations of KmL are inherent in all clustering algorithms. These techniques
are mainly exploratory, they cannot statistically test the reality of cluster existence.
Moreover, the determination of the optimal cluster number is still an unsettled issue
and EM-algorithms can be particularly sensitive to the problem of the local maximum.
KmL attempts to deal with these two points by iterating an optimisation process with
different initial seeds. Finally, KmL is not model-based, which can be an advantage
(non-parametric, more flexible) but also a disadvantage (no scope for testing goodness
of fit).

4.2 Advantages

KmL presents some improvement compared to the existing procedures. Since it is a
non-parametric algorithm, it does not need any prior information and consequently
avoids the issues related to model selection, a frequent concern reported with existing
model-based procedures (Nagin 2005, p 65). KmL enables the clustering of trajec-
tories that do not follow polynomial trajectories. Thus, it can deal with a larger set
of data (such as Hubert’s hospitalization time in anorexics which follows a normal
distribution).

The simulations have shown overall that KmL (like Proc Traj) gives acceptable
results for all polynomial examples, even with high levels of noise. A major interest
of KmL is that it can work in conjunction with Proc Traj. Finding the number of
clusters and the shape of the trajectories (the degree of the polynomial) is still a long
and difficult task for Proc Traj users. Running KmL first can give information on both
these parameters. In addition, even if Proc Traj has already proved to be an efficient
tool in many situations, there is a need to confirm the results, which are mainly of
an exploratory nature. When the two algorithms yield similar results, it reinforces
confidence in the results.
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4.3 Perspectives

A number of unsolved problems need investigation. The optimization of cluster num-
ber is a long-standing and important question. Perhaps the particular situation of uni-
variate longitudinal data could yield an efficient solution not yet found in the general
context of cluster analysis.

Another interesting point is the generalisation of KmL to problems of higher dimen-
sion. At this time, KmL deals only with longitudinal trajectories for a single variable.
It would be interesting to develop it for multidimensional trajectories, considering
several facets of a patient jointly.

As a last perspective, present algorithms agglomerate trajectories with similar global
shape. Thus two trajectories that may be identical in a time translation (one starting
early, the other starting late but with the same evolution) will be allocated to two
different clusters. One may however consider that the f́4starting timef́6 is not really
important and that the local shape (the evolution of the trajectory) should be given
more emphasis than the overall shape. In this perspective, two individuals with the
same development, one starting early and one starting later, would be considered as
belonging to the same cluster.
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